Cinquième partie / Ce qu’il faut faire. Maintenant.

5.5 Changer notre alimentation

Toutes les sources numériques ont été consultées le

  1. un temps lourd et chaud National Centers for Environmental Information, ‘November 2021 National Climate Report’, 2021, https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202111; Cappucci, M., and Samenow, J., ‘Fall on hold: forecasters predict long-lasting warm temperatures in eastern U.S.’, Washington Post, 6 octobre 2021, https://www.washingtonpost.com/weather/2021/10/05/warm-fall-weather-eastern-us/.

    La concentration en CO2 de l’atmosphère de la planète Terre sera […] 2 à 3 parties par million plus élevée Global Monitoring Laboratory, ‘Archived data’, National Oceanic and Atmospheric Administration, 2021, https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts.

    un réchauffement de 0,01° à 0,04°C en moyenne de la surface de la Terre Zelinka, M. D., et al., ‘Causes of higher climate sensitivity in CMIP6 models’, Geophysical Research Letters, 47 (1), 2020: Article e2019GL085782, https://doi.org/10.1029/2019GL085782.

    un peu moins d’un milliard de kilos d’azote […] dans le Golfe du Mexique Tian, H., et al., ‘Long-term trajectory of nitrogen loading and delivery from Mississippi River Basin to the Gulf of Mexico,’, Global Biogeochemical Cycles, 34 (5), 2020: Article e2019GB006475, https://doi.org/10.1029/2019GB006475.

    l’eau de la mer ayant été privée d’oxygène dissous Gruber, N., and Galloway, J. N., ‘An Earth-system perspective of the global nitrogen cycle’, Nature, 451 (7176), 2008: 293–6, https://doi.org/10.1038/nature06592; Doering, O. C., et al., Reactive Nitrogen in the United States: An Analysis of Inputs, Flows, Consequences and Management Options. A Report of the EPA Science Advisory Board, United States Environmental Protection Agency, août 2011, https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100DD0K.txt.

    ce processus est à l’origine d’un conflit entre les producteurs de matières premières du Midwest Purcell, K. M., et al., ‘Fleet behavior is responsive to a large-scale environmental disturbance: hypoxia effects on the spatial dynamics of the northern Gulf of Mexico shrimp fishery’, PLOS One, 12 (8), 2017: Article e0183032, https://doi.org/10.1371/journal.pone.0183032.

    ce qui fait disparaître la terre deux à cinq fois plus rapidement Nearing, M. A., et al., ‘Natural and anthropogenic rates of soil erosion’, International Soil and Water Conservation Research, 5 (2), 2017: 77–84, https://doi.org/10.1016/j.iswcr.2017.04.001.

    sur le 1,9 milliard d’hectares de terres agricoles de la planète Phalke, A. R., et al., ‘Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine’, ISPRS Journal of Photogrammetry and Remote Sensing, 167, 2020: 104–22, https://doi.org/10.1016/j.isprsjprs.2020.06.022.

    entre 10 000 et 20 000 milliards de kilos de couche arable Montanarella, L., et al., ‘World’s soils are under threat’, SOIL, 2 (1), 2016: 79–82, https://doi.org/10.5194/soil-2-79-2016.

    plusieurs espèces animales au minimum […] auront tiré leur révérence Rounsevell, M. D. A., et al., ‘A biodiversity target based on species extinctions’, Science, 368 (6496), 2020: 1193–5, https://doi.org/10.1126/science.aba6592; Young, H. S., et al., ‘Patterns, causes, and consequences of Anthropocene defaunation’, Annual Review of Ecology, Evolution, and Systematics, 47, 2016: 333–58, https://doi.org/10.1146/annurev-ecolsys-112414-054142; Ceballos, G., et al., ‘Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines’, Proceedings of the National Academy of Sciences, 114 (30), 2017: e6089–e6096, https://doi.org/10.1073/pnas.1704949114.

    nombre d’autres de la pollution ou de la pénurie d’eau Cardoso, P., et al., ‘Scientists’ warning to humanity on insect extinctions’, Biological Conservation, 242, 2020: Article 108426, https://doi.org/10.1016/j.biocon.2020.108426; Lund., J., et al., ‘Lessons from California’s 2012–2016 drought’, Journal of Water Resources Planning and Management, 144 (10), 2018: Article 04018067, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984.

    des facteurs de stress environnemental Maier, D. S., ‘Should biodiversity and nature have to earn their keep? What it really means to bring environmental goods into the marketplace’, Ambio, 47 (4), 2018: 477–92, https://doi.org/10.1007%2Fs13280-017-0996-5; Turvey, S. T., and Crees, J. J., ‘Extinction in the Anthropocene’, Currents in Biology, 29 (19), 2019: R982–R986, https://doi.org/10.1016/j.cub.2019.07.040; Yanosky, A., ‘Paraguay’s challenge of conserving natural habitats and biodiversity with global markets demanding for products’, in Raven, P. H., et al., eds., Conservation Biology: Voices from the Tropics (Chichester: Wiley Blackwell, 2013), 113–19, https://doi.org/10.1002/9781118679838.ch14.

    les changements susmentionnés sont d’abord dus à l’agriculture Richter, B. D., et al., ‘Water scarcity and fish imperilment driven by beef production’, Nature Sustainability, 3 (4), 2020: 319–28, https://doi.org/10.1038/s41893-020-0483-z; Eshel, G., and Martin, P. A., ‘Geophysics and nutritional science: toward a novel, unified paradigm’, American Journal of Clinical Nutrition, 89 (5), 2009: 1710S–1716S, https://doi.org/10.3945/ajcn.2009.26736BB; Bouwman, L., et al., ‘Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period’, Proceedings of the National Academy of Sciences, 110 (52), 2013: 20882–7, https://doi.org/10.1073/pnas.1012878108; Eshel, G., et al., ‘Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States’, Proceedings of the National Academy of Sciences, 111 (33), 2014: 11996–12001, https://doi.org/10.1073/pnas.1402183111; Eshel, G., et al., ‘Partitioning United States’ feed consumption among livestock categories for improved environmental cost assessments’, Journal of Agricultural Sciences, 153 (3), 2014: 432–45, https://doi.org/10.1017/S0021859614000690; Eshel, G., ‘How to prioritize voluntary dietary modification’, Advances in Environmental and Engineering Research, 1 (4), 2020: Article 005, http://dx.doi.org/10.21926/aeer.2004005; Shepon, A., et al., ‘Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes’, Environmental Research Letters, 11 (10), 2016: Article 105002, https://doi.org/10.1088/1748-9326/11/10/105002; Davis, K. F., et al., ‘Meeting future food demand with current agricultural resources’, Global Environmental Change, 39, 2016: 125–32, https://doi.org/10.1016/j.gloenvcha.2016.05.004; Liu, J., et al., ‘Systems integration for global sustainability’, Science, 347 (6225), 2021: Article 1258832, https://doi.org/10.1126/science.1258832

  2. la perte des terres arables qui met en danger les réserves alimentaires DeLonge, M., and Stillerman, K. P., Eroding the Future: How Soil Loss Threatens Farming and Our Food Supply, Union of Concerned Scientists, décembre 2020, https://www.jstor.org/stable/resrep28410.

    la pollution de l’eau par eutrophisation Malone, T. C., and Newton, A., ‘The globalization of cultural eutrophication in the coastal ocean: causes and consequences’, Frontiers in Marine Science, 7, 2020: Article 670, https://doi.org/10.3389/fmars.2020.00670; Li, Y., et al., ‘The role of freshwater eutrophication in greenhouse gas emissions: a review’, Science of the Total Environment, 768, 2021: Article 144582, https://doi.org/10.1016/j.scitotenv.2020.144582.

    la surconsommation des rares ressources d’eau potable Gleick, P. H., and Cooley, H., ‘Freshwater scarcity’, Annual Review of Environmental Resources, 46, 2021: 319–48, https://doi.org/10.1146/annurev-environ-012220-101319.

    les régimes alimentaires individuels reflètent en partie les politiques gouvernementales Nestle, M., Food Politics: How the Food Industry Influences Nutrition and Health (Berkeley, CA: University of California Press, 2007); Gressier, M., et al., ‘Healthy foods and healthy diets: how government policies can steer food reformulation’, Nutrients, 12 (7), 2020: Article 1992, https://doi.org/10.3390%2Fnu12071992.

    imaginons que l’on utilise comme mesure un burger Poore, J., and Nemecek, T., ‘Reducing food’s environmental impacts through producers and consumers’, Science, 360 (6392), 2018: 987–92, https://doi.org/10.1126/science.aaq0216; Pelletier, N., et al., ‘Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States’, Agricultural Systems, 103 (6), 2010: 380–89, https://doi.org/10.1016/j.agsy.2010.03.009; Eshel et al., ‘Land, irrigation water’; Eshel et al., ‘Partitioning United States’ feed consumption’.

  3. Cette transition alimentaire offre également des bienfaits nutritionnels significatifs Pan, A., et al., ‘Red meat consumption and mortality: results from 2 prospective cohort studies’, Archives of Internal Medicine, 172 (7), 2012: 555–63, https://doi.org/10.1001/archinternmed.2011.2287; Abete, I., et al., ‘Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies’, British Journal of Nutrition, 112 (5), 2014: 762–75, https://doi.org/10.1017/S000711451400124X; Jahn, J. L., et al., ‘Food, health and the environment: a global grand challenge and some solutions’, Daedalus, 144 (4), 2015: 31–44, https://doi.org/10.1162/DAED_a_00352; Satija, A., et al., ‘Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies’, PLOS Medicine, 13 (6), 2016: Article e1002039, https://doi.org/10.1371/journal.pmed.1002039; Springmann, M., et al., ‘Options for keeping the food system within environmental limits’, Nature, 562 (7728), 2018: 519–25, https://doi.org/10.1038/s41586-018-0594-0; Heller, M. C., Keoleian, G. A., and Willett, W. C., ‘Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review’, Environmental Science and Technology, 47 (22), 2013: 12632–47, https://doi.org/10.1021/es4025113; Willett, W., et al., ‘Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems’, Lancet, 393 (10170), 2019: 447–92, https://doi.org/10.1016/S0140-6736(18)31788-4

    environ 350 millions de tonnes de CO2eq par année Eshel, G., et al., ‘Environmentally optimal, nutritionally sound, protein and energy conserving plant based alternatives to U.S. meat’, Scientific Reports, 9, 2019: Article 10345, https://doi.org/10.1038/s41598-019-46590-1.

    plus de 90 % de la totalité des émissions du secteur résidentiel américain dans son ensemble United States Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019, avril 2021, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019.