Quinta Parte / Qué Debemos Hacer Ahora

5.5 Cambiar la dieta

Todas las fuentes en línea se consultaron el

  1. en un tiempo cálido y bochornoso National Centers for Environmental Information, ‘November 2021 National Climate Report’, 2021, https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202111; Cappucci, M., and Samenow, J., ‘Fall on hold: forecasters predict long-lasting warm temperatures in eastern U.S.’, Washington Post, 6 de octubre de 2021, https://www.washingtonpost.com/weather/2021/10/05/warm-fall-weather-eastern-us/.

    la concentración de CO2 en la atmósfera terrestre será de 2 a 3 partes por millón más alta Global Monitoring Laboratory, ‘Archived data’, National Oceanic and Atmospheric Administration, 2021, https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts.

    caldeará la superficie terrestre entre unos 0,01 y 0,04°C Zelinka, M. D., et al., ‘Causes of higher climate sensitivity in CMIP6 models’, Geophysical Research Letters, 47 (1), 2020: artículo e2019GL085782, https://doi.org/10.1029/2019GL085782.

    casi 1.000 millones de kilos de nitrógeno […] hasta el golfo de México Tian, H., et al., ‘Long-term trajectory of nitrogen loading and delivery from Mississippi River Basin to the Gulf of Mexico,’, Global Biogeochemical Cycles, 34 (5), 2020: artículo e2019GB006475, https://doi.org/10.1029/2019GB006475.

    privará al mar de oxígeno disuelto Gruber, N., and Galloway, J. N., ‘An Earth-system perspective of the global nitrogen cycle’, Nature, 451 (7176), 2008: 293–6, https://doi.org/10.1038/nature06592; Doering, O. C., et al., Reactive Nitrogen in the United States: An Analysis of Inputs, Flows, Consequences and Management Options. A Report of the EPA Science Advisory Board, United States Environmental Protection Agency, agosto de 2011, https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100DD0K.txt.

    este proceso enfrenta a los agricultores del medio oeste Purcell, K. M., et al., ‘Fleet behavior is responsive to a large-scale environmental disturbance: hypoxia effects on the spatial dynamics of the northern Gulf of Mexico shrimp fishery’, PLOS One, 12 (8), 2017: artículo e0183032, https://doi.org/10.1371/journal.pone.0183032.

    las tierras de cultivo pierden suelo de dos a tres veces más Nearing, M. A., et al., ‘Natural and anthropogenic rates of soil erosion’, International Soil and Water Conservation Research, 5 (2), 2017: 77–84, https://doi.org/10.1016/j.iswcr.2017.04.001.

    más o menos 1.900 hectáreas de cultivos del planeta Phalke, A. R., et al., ‘Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine’, ISPRS Journal of Photogrammetry and Remote Sensing, 167, 2020: 104–22, https://doi.org/10.1016/j.isprsjprs.2020.06.022.

    entre 10 y 20 billones de kilogramos de suelo Montanarella, L., et al., ‘World’s soils are under threat’, SOIL, 2 (1), 2016: 79–82, https://doi.org/10.5194/soil-2-79-2016.

    al menos varias especies animales […] habrán dicho su adiós final Rounsevell, M. D. A., et al., ‘A biodiversity target based on species extinctions’, Science, 368 (6496), 2020: 1193–5, https://doi.org/10.1126/science.aba6592; Young, H. S., et al., ‘Patterns, causes, and consequences of Anthropocene defaunation’, Annual Review of Ecology, Evolution, and Systematics, 47, 2016: 333–58, https://doi.org/10.1146/annurev-ecolsys-112414-054142; Ceballos, G., et al., ‘Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines’, Proceedings of the National Academy of Sciences, 114 (30), 2017: e6089–e6096, https://doi.org/10.1073/pnas.1704949114.

    muchas otras tendrán su origen en la contaminación del agua o su escasez Cardoso, P., et al., ‘Scientists’ warning to humanity on insect extinctions’, Biological Conservation, 242, 2020: artículo 108426, https://doi.org/10.1016/j.biocon.2020.108426; Lund., J., et al., ‘Lessons from California’s 2012–2016 drought’, Journal of Water Resources Planning and Management, 144 (10), 2018: artículo 04018067, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984.

    Aparte del elefante en la cacharrería Maier, D. S., ‘Should biodiversity and nature have to earn their keep? What it really means to bring environmental goods into the marketplace’, Ambio, 47 (4), 2018: 477–92, https://doi.org/10.1007%2Fs13280-017-0996-5; Turvey, S. T., and Crees, J. J., ‘Extinction in the Anthropocene’, Currents in Biology, 29 (19), 2019: R982–R986, https://doi.org/10.1016/j.cub.2019.07.040; Yanosky, A., ‘Paraguay’s challenge of conserving natural habitats and biodiversity with global markets demanding for products’, in Raven, P. H., et al., eds., Conservation Biology: Voices from the Tropics (Chichester: Wiley Blackwell, 2013), 113–19, https://doi.org/10.1002/9781118679838.ch14.

    los problemas citados se deben fundamentalmente a la agricultura Richter, B. D., et al., ‘Water scarcity and fish imperilment driven by beef production’, Nature Sustainability, 3 (4), 2020: 319–28, https://doi.org/10.1038/s41893-020-0483-z; Eshel, G., and Martin, P. A., ‘Geophysics and nutritional science: toward a novel, unified paradigm’, American Journal of Clinical Nutrition, 89 (5), 2009: 1710S–1716S, https://doi.org/10.3945/ajcn.2009.26736BB; Bouwman, L., et al., ‘Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period’, Proceedings of the National Academy of Sciences, 110 (52), 2013: 20882–7, https://doi.org/10.1073/pnas.1012878108; Eshel, G., et al., ‘Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States’, Proceedings of the National Academy of Sciences, 111 (33), 2014: 11996–12001, https://doi.org/10.1073/pnas.1402183111; Eshel, G., et al., ‘Partitioning United States’ feed consumption among livestock categories for improved environmental cost assessments’, Journal of Agricultural Sciences, 153 (3), 2014: 432–45, https://doi.org/10.1017/S0021859614000690; Eshel, G., ‘How to prioritize voluntary dietary modification’, Advances in Environmental and Engineering Research, 1 (4), 2020: artículo 005, http://dx.doi.org/10.21926/aeer.2004005; Shepon, A., et al., ‘Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes’, Environmental Research Letters, 11 (10), 2016: artículo 105002, https://doi.org/10.1088/1748-9326/11/10/105002; Davis, K. F., et al., ‘Meeting future food demand with current agricultural resources’, Global Environmental Change, 39, 2016: 125–32, https://doi.org/10.1016/j.gloenvcha.2016.05.004; Liu, J., et al., ‘Systems integration for global sustainability’, Science, 347 (6225), 2021: Article 1258832, https://doi.org/10.1126/science.1258832

  2. pérdidas de suelo que hipotecan los recursos alimentarios DeLonge, M., and Stillerman, K. P., Eroding the Future: How Soil Loss Threatens Farming and Our Food Supply, Union of Concerned Scientists, diciembre de 2020, https://www.jstor.org/stable/resrep28410.

    la contaminación del agua por eutrofización Malone, T. C., and Newton, A., ‘The globalization of cultural eutrophication in the coastal ocean: causes and consequences’, Frontiers in Marine Science, 7, 2020: artículo 670, https://doi.org/10.3389/fmars.2020.00670; Li, Y., et al., ‘The role of freshwater eutrophication in greenhouse gas emissions: a review’, Science of the Total Environment, 768, 2021: artículo 144582, https://doi.org/10.1016/j.scitotenv.2020.144582.

    consumo excesivo de recursos hídricos escasos Gleick, P. H., and Cooley, H., ‘Freshwater scarcity’, Annual Review of Environmental Resources, 46, 2021: 319–48, https://doi.org/10.1146/annurev-environ-012220-101319.

    las dietas individuales reflejan en parte las políticas Nestle, M., Food Politics: How the Food Industry Influences Nutrition and Health (Berkeley, CA: University of California Press, 2007); Gressier, M., et al., ‘Healthy foods and healthy diets: how government policies can steer food reformulation’, Nutrients, 12 (7), 2020: artículo 1992, https://doi.org/10.3390%2Fnu12071992.

    imaginemos que comemos una hamburguesa como norma Poore, J., and Nemecek, T., ‘Reducing food’s environmental impacts through producers and consumers’, Science, 360 (6392), 2018: 987–92, https://doi.org/10.1126/science.aaq0216; Pelletier, N., et al., ‘Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States’, Agricultural Systems, 103 (6), 2010: 380–89, https://doi.org/10.1016/j.agsy.2010.03.009; Eshel et al., ‘Land, irrigation water’; Eshel et al., ‘Partitioning United States’ feed consumption’.

  3. Esa transición en la dieta proporcionaría también beneficios nutritivos Pan, A., et al., ‘Red meat consumption and mortality: results from 2 prospective cohort studies’, Archives of Internal Medicine, 172 (7), 2012: 555–63, https://doi.org/10.1001/archinternmed.2011.2287; Abete, I., et al., ‘Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies’, British Journal of Nutrition, 112 (5), 2014: 762–75, https://doi.org/10.1017/S000711451400124X; Jahn, J. L., et al., ‘Food, health and the environment: a global grand challenge and some solutions’, Daedalus, 144 (4), 2015: 31–44, https://doi.org/10.1162/DAED_a_00352; Satija, A., et al., ‘Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies’, PLOS Medicine, 13 (6), 2016: artículo e1002039, https://doi.org/10.1371/journal.pmed.1002039; Springmann, M., et al., ‘Options for keeping the food system within environmental limits’, Nature, 562 (7728), 2018: 519–25, https://doi.org/10.1038/s41586-018-0594-0; Heller, M. C., Keoleian, G. A., and Willett, W. C., ‘Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review’, Environmental Science and Technology, 47 (22), 2013: 12632–47, https://doi.org/10.1021/es4025113; Willett, W., et al., ‘Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems’, Lancet, 393 (10170), 2019: 447–92, https://doi.org/10.1016/S0140-6736(18)31788-4

    unos 350 millones de toneladas de CO2eq anuales Eshel, G., et al., ‘Environmentally optimal, nutritionally sound, protein and energy conserving plant based alternatives to U.S. meat’, Scientific Reports, 9, 2019: Article 10345, https://doi.org/10.1038/s41598-019-46590-1.

    más del 90 por ciento de las emisiones de todo el sector residencial estadounidense United States Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019, abril de 2021, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019.